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1€ » is a zero of L(.), then L(A) = %E‘)-, Gk(!) are functions whose replace-

ment by gk(g) in (2) maps L(\) into f:()\), :(H,J,‘J) is a function defined by
an equality of form (3) with replacement of 7, (%) by Sk('v"), P,(2) is a
polynomial defined by the equality

— 1 2 wo{t,a.y) .
Py (yetvi= S\ 2Tl awy
v()\- 23‘.) L(W Hy

v

where C, is a circle containing the single zero \\J of the function L(~);
r(z) = PJ(z) for v =.2. The main result of the paper is that a certain
’

functional equation whose left side is a finite sum of Stieltjes integrals
can be reduced to a simpler functional equation whose left side is a single
Riemann integral. Theorems 5, 6, 7 are devoted to the summability of the

o (z)

series . Pu(z)e and of its derivatives with respect to .(z) and its

derivatives.
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*
% THE TRANSFORMATION OF A FUNCTIONAL EQUATIUN TO SIMPLER FORM )

by

A. F. Leont'ev

Studied in the work of Delsarte, Schwartz, Kahane et al. (in this
regard see _1,) were functiuvns f(z), defined and continuous on the whole imaginary

axis and satisfving on this axis the equation
b
-+ E)d = Q.
§f(z FEU(E) = 0 1)

Here _a,b. is . certain segment of the imaginary axis, 7(3) is a function of
bounded variation on [a,b.. The functions f(z) satisfying Eq. (1) are called

periodic in the mean. studied in [1] were continuous solutions of Eq. (1) defined

not on the whole axis, but only on a certain interval (a,, b;) > Ta,bl.

In the present paper we consider the more general equation

n b
> § [ (z -+ Bydow (8) = 0, (2)

k=0

where [a,b, is a segment of the imaginary axis, Uk(g) (k = 0,1,...,0) are functions
of bounded variation on [a,bj. It is assumed that the function f(z) is defined

and has continuous derivatives up to and including the order n on a certain
interval (al'bl) = [a,b:. The class of such functions is denoted by Cn(al,bl).

A particular case of Eq. (2) is a differential-difference equation with constant

coefficients. An extensive literature is devoted to differential-difference

*) Translated from Mat. Sbornik [Math. Symposium], Vol. 67(109}), No. 4,

pp. 541-560 (1965).
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the function

F@) - @)~ S Py(ae™

=1
in this same interval satis{ies the equation

[
SF(z+§)‘P(§)d§=O- ()

Valid also is the assertion that if the function F(z) Cn(aL,bl) satisfies Eq. 3

then this function also satisfies Eq. (2).

Eq. (3) is an equation of form (1); it is even simpicer than Eqg. (1).
Because of the result mentioned above, the solutions of Eq. (2) will have the very
-ame properties as the soiutions of Eq. (1). Several of these properties arc
mentioned in the paper for an example.

1. Auxiliary Assumptions

For what follows we shall need:

Lemma 1. Let the function L(A) have the form

n h
LAy= 312" (et doy (). (1
k=0 a
where [a,b] is the same segment of the imaginary axis, and 'k(’) (k = 0,1,...,n)

are functions of bounded variation on :a,bJ. Furthermore, let - be some zero

|

of the function L(*). Then the function
7 L)
L) = =2
(03] -
has the same form as the function L(-), that is,
" b
Lay =3 M {erdon (8), 2
k=0 a
where ;i(i) (k = 0,1,...,n) are functions of bounded varijation on ia,b_,
Proof. Let us represent I.(') in the form
n b
Lh=3 A‘S er=mt ¢ft dgy (F)
Ao a ( 3)

and let us set

PQ(§)=:§eB€do;(§) (k==0,1, ..., n.

a

-3-



equations. This can be found, e.g., in the book by E. Pinney [2] and the survey
article by A. M. Zverkin, G.A. Kamenskii, S.B. Norkin and L.E. El'sgolts [3].
Also given in the latter are papers in which equations of type (2) are studied.
[t is shown in the present paper that Eq. (2) can be reduced to Eq. (1).
Let us formulate the result in greater detail. Let the characteristic

tunction

n b
L}y =3 A Se"ﬁ dow (8)

k=0 3

not be identically equal to zero and have infinitely many zeros. Let A

“1toee

be various zeros of the function L(-), and let m, ,m be their multiplicities.

gt

We shall assume (and this does not cause a loss in generality of the

reasoning) that "a,b_ contains the origin strictly within itself. Let

n b dk‘-
owh=3 S[;E;Sf(ﬁ—-n)ﬂ”dn]d0~@%

We associate the functions f(z) - Cn(al,bl) with the series

F@~ 3 P.@ e,
Ay

where

Ayz 1 o (11 * ,)
P = - \ S ey,
(2)e ZniS LW e*fdp

Cy

and ¢ is a circle with center at the point Av within which there are no zeros

of the function L(.) that are different from kv' We introduce the function

Lip)

K (P') = ’
m—=A)™ .o (B— ;"3)"’
where O n sm(v=1,2,...,s). Let us select whole numbers n, such that the
v 7
condition n, + .., + ng oo n + 2 is fulfilled. Under this condition the function

K(.) can be represented in the form b
K(p) = S ® (B) ent dt,

a
where (%) is continuous on [a,bj. It is shown in the present article that if
the function £(z) - C"(a),b)) satisfies Eq. (2) in the interval (a; - a, b) - b),

-2-



the function

Fa)= [@)— 3 Pvae™

in this same interval satisfies the equation

b
(Pt Do@d =0 .

n

Valid also is the assertion that if the function F(z) - C (a bl) satisfies Eq. 3,

1
then this function also satisfies Eq. (2).

Eq. (3) is an equation of form (l); it is even simpler than Eq. (1).
Because of the result mentioned above, the solutions of Eq. (2) will have the very
same properties as the solutions of Eq. (l). Several of these properties arc

mentioned in the paper for an example.

1. Auxiliary Assumptions

For what follows we shall need:

Lemma 1. Let the function L()A) have the form

n b
Ly=3 A*Se’-i dok (%), (1)
k=0 a

where [a,b] is the same segment of the imaginary axis, and 'k(?) (k = 0,1,...,n)

are functions of bounded variation on la,bj. Furthermore, let 5 be some zero

— ————— Y T S

f the function L(%). Then the function

Ly =L®

3 —
has the same form as the function L(:), that is,
o n h i~
L(A) = 2 kkSe"EdUIa (&), (2)
k=0 a
where ;k(ﬁ) (k = 0,1,...,n) are functions of bounded variation on La,b.

Proof. Let us represent L(*) in the form

n b
L(A) =3 A*( eh-0it oht dg, (F)
2" ' o)

and let us set

V.(§)=§e"€da,,(€,) (k=0,1, ..., n).
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It is obvious that
V,(a)=0. (14)
Applving the method of integration by parts to the integrals on the right-hand

side of relation (3) and taking equality (4) into account, we get

n b n
L) =3 » [v. (0~ — ) [ AR Vi (B) de] = ( 3BV (b)) eh=Bib |

k=p a =0

n n b
+ 30—V — =B F M (PP @)

k=1 R=9

The first sum on the right-hand side of this equality equals zero, since it cquals

L(z), and L(?) = 0. Therefore,

L= 0—n] 3 E=E g § g da}.

k=1 r—8 he=0

Using the expansion

M= ¥ - k%: Bk—m—-\km
r—p 4
m=a

and changing the order of summation, we get

— n b
Ly = (x—m{z [“‘“"’ > g V:«(b)—ge““’*vm(gma]—

k=m-+y a
[
=2 (et dg) - ()
Let
0a () = — \e—"- VaBrds, a<E<H,
Om (8) = — ge BV ds a<E<Y,
b n
In() = — e Va@)dE e T FTTTRO)
a k=m+1
m=20,1, , n—1,
The functions t@(?) (k = 9,1,...,n) are functions of bounded variation on La,bj.

By means of these functions representation (5) is written in the form

n b
LA =(A—8) 3 A" (e don8),

m=a a

-4 -



from which follows the desired representation (2). The lemma is proved.

Lemma 2. Let L(‘) be an entire function of exponential type and lct

v(*) be a function Borel-associated with it, so that

L) = ST(E)e“‘ dt,
C

where € is a circle on and outside which the function v(£) is regular. Further-

—_— e e e . e ———— e ———— el

more, let - be some zero of the function L(.). Then the function

has the representation

Loy = (T @eta,
c
where

%t
TR =—e" (e, LeC
1
In order to prove this lemma we write

L}y==< Q 7(8)e™ M PRt
27 )

After integrating by parts, setting

v = (edtr e, (6)

:"mf"

we get

‘() — -
L(h) - LRy k——a)-——s VEe* R ar, 7
4

The function V(7) is single-valued on the contour C, since the difference between

its value after going along the contour C and the value before doing this is

Sﬂrmm-zmum:o

o

rherelore, the first term on the right-hand side of equality (7) equals zero and,

consequently,

L= =2Vt — ) - i (T @ ag,

) A c

which is what was required to be proved.



Lemma 3. Let .(z) be an arbitrary entire function. We set

w
\

. G b —an . - 3

= e U g™ an ]y @),

~. U auer g

O, X, ) - 3; o2 \ \[: gu\(l - g__.'])c')l-‘ d']J ?(i)d&,,
C

n

—_— —— — —— el o L

where the functions Y (%), J(f) and the contour C are the same as in lemma 2, and

X and . are abritrary. Then there holds the equality

RO = @ =P )+ (e s nT e (8)
C

Let us establish this equality. We have

-

an e L ter _
ot = 2 e met Mhan | v @)t -
c n
='!‘S'va(a*']>e-““e‘*‘-°>=d, B h g
2y ‘ e v(E)de.

After integrating bv parts and making use of notation (6), we get

Mot g = |y : 4 ~nn L m—pt
¥ {Z‘(QSqﬂarnw e (MJL_

ni

3
1 . ; _
—m [0 e—p (pe o met M ey @,
¢ .
Included in the first bracketed expression is a function single-valued on the
contour C, since V(7) is a single-valued function, Therefore, the first term

on the right-hand side >f the last equality equals zero and, consequently,

13
R e e TP T Met~Mdn ] @)t +
C o

+ ﬁ;(SW(aTE)?(é)dE.

Because

e g

Y(x - 1) PAalis dn - §w(a G+ E—m) o™ dn.

the first integral on the right-hand side equals eaui*(i,a,,). Hence, equality
(€) is irdeed valid.
; * e ;
The functions « (4,%,.) and L (1,%,.) are generated by the functions

[.(*) and f(3) from lemma 2, respectively., Let us introduce the functions (.,x,.

-6-



#(<.%,.), which are gencrated by the functions L(X) and L(}) of lemma 1, and let
us set up a relation for them that is analogous to relation (8).

Lemma 4, We set

n b 3
R A e [ Pl L= e™ dn | dow 3,

vk
T ¢ 0%
k=og Y% 0

- P B

o ) — e~ g {9 = e

i, o) e ?4 Sagk [Sw(a+§—vl)e"“dq]dm(g).
0g °® o

where the functions ’k(*\. ‘k(?) are the same as in lemma 1. Let the segment

.a,b_ contain the origin rigerously within itself and let the function '(z) be

defined and have ccntinitous derivatives up to and including n order on a certain

interval (al,b ) la,b,. Then, for any - and & - (a, - a, b, - b) there holds

1 1 1

the equality
— [

et ooy =@p—p) ™o, ay) + b S Y™ (@ + By dok ).
hmo | (9

) - . . "z s
We first verify equality (9) for the function .(z) = e ”, where * is an
arbitrary number. For such a function

ar Mt (AR

Vil g—me™dn=e
. [l~-1

n
therefore,

’

Mo, x, ) = et BT L) o an gy =t LN L)

w—A B—2

. N
Moreover, if .(z) = e¢ ', ithen

h

> \ Y (2 - ) day () = e** L ().

Lo
; nz
From these equalities it fecllows that relation (9) for the function .(2) = e
is indeed valid.
. - imz . ; .

LLet us examine the system e . It is complete in any vertical
strip of width less than 2-. Any function analytic in this strip can be approxi-
mated arbitrarily weil by means of finite linear combinations of functions from

the indicated system. Consequently, relation (9) is valid for any analytic func-

tion from the strip; in particular, it is valid for polynomials. Let .(z) be an

-7-



arbitrary function defined on the interval (al’bl) > {a,b] and having continuous
derivatives of up to n order inclusive on this interval. We choose the segment
Eaz,bzl such that [a,b] = [az, 2] c (a l)' Let P(z) be a polynomial having
the property that

M @) —PY @) | <e, z€[an b} (B=0,1,2 ... ,n) (10)
where £ > 0 is an arbitrary number. Such a polynomial exists. Since relation (9)
is valid for the polynomial P(z), we conclude on the basis of (10) that it will
also be valid for the function | (z) when a € (32 - a, b2 - b). The lemma is proved.

Remark. Lemmas 2 and 3 make it possible to get equality (8) in a

natural and very simple manner; they are not used in the following. Equality (8),

however, suggested the idea of the existence of equality (9).

Lemma 5. Let (u,%,v) be the function defined in lemma 4 and let L(})

be the function defined in lemma 1. If the function ©(z) is defined, has con-

tinuous derivatives of up to n order inclusive in the interval (a ,b,) o [a,b],

and in the interval (a1 - a, b1 - b) satisfies the equation
n b
% (v +bda@ =0, (11)
h=0 a

then the value of the integral

S op,a, w) e"'dp,
r
sn

L(p) (12)

where ." 1s any closed contour which L{(.) # 0, does not depend on &, 1 € (al - a,

b, - b).

We have

0 =0 p), Z < o [S\v(ﬂ-ﬁ n)E""‘““’dn]dok(i)=

on the basis of which

h t—a
do o & /] n
_;:?;‘, . a—g‘—[‘;_‘g p(E—1)e dt] doa (%)



Since
o ¢ NS ¢ -
a1 S “ l; — [’t'“ dl = — \P(l)e“‘& ) + .‘r ’a "i' Cl) e--av"
-
we find that b
A _ o an <A )
= W Lo ,,}- Q v (& + a)day (2). (13)

a
By virtue of condition (11), the second term on the right-hand side of this
equality equals zero; therefore,

LI

— =g (x)e " Ln).

dx
Hence it follows that
a g [SUNTTI R 5 TP 1 * piz—a)
R —e— L = — =
a2 S 1 Uy o di q(J)&e du =0,
P

which is what was requir~d to be proved.

Lemma 6. If the value of integral (12), where " is any closed contour
on which L. © 0, does not depend on 1 and the function L(:,) has at least onc

zero, the function (z) satisfies Egq. (1l).

According to the condition and equality (13), we have

_i o (2. ) _ Suz—a)
™ ‘S—~——-———U“) L T —w(a)Se *dp +

r
I3

T Y e M (2—a)
E\‘P”’(c—ra)dm(é)}sl--’ dp = 0.
r

i
‘b»n L

a
The first term cquals zero and the integral

eMiz—a)
S L(n)

du,

is not identically equal te zcro for any z if as " we take a circle of small

radius with cernter at the rero o

0 of the function L(Ju). Therefore,

"

2V~ a)doc) - o0,

L o nag

Lemma 7. Let = he a zero (of multiplicity m) of the function L(*) and

sz
let .(z) = zpe , wherc O p- m. Then the residue of the function

o2, )
L)

iz

-9.



— " | —— —— —— —

Proof. 1In the proof of lemma 4 it was shown that

oy, ¢, W) = eat—w Lw—Loy

p—2
Hence,
Ol % 9) = f;:? [em_m L_(u:):_;,l_m] (A =B, ¥(2) = 2vef?)
or
But

@ L) LM kL + o
w =], = s -y atoata)
art Lu Bb—2Aly-p (1 — Ayr+1 (4 — Ap—i+t

= .

kL
(1 — Ayt *

Therefore,

P
- vy (p—w) . (e
o ¥ <Zcﬂ m«m*“')ume ¥

V=0
and consequently

¥ ur b pu—p) t—a) i Cla¥ 2=
L voo =7 (14)

Hence, we conclude: at points u # 3 function (14) is regular and therefore its
residue at these points equals zero; at the point u = 3 the residue equals the
coefficient €y for (u - 5)-1 in the expansion of function (14) into a Laurent

series; in which case

e = oS v E P

(e~ =latc—a)f =2
Vet

The lemma i{s proved.

-10-



Main Results

Considered in this section are the functions .(z), defined and having
continuous derivatives ot up to n order inclusive on the interval (al’bl)

_a,b_. of the imaginary axis and solving in the interval (a1 - a, b, - b) the

1
equation

b

M) = 3 (™ @ E)ydo(t) - 0, (1)

o
k=0a

where k(-‘) (k = 0,1,...,n) are functions of bounded variation on  a,b.. We
assume that the origin lics rigorously within the segment [a,b,.
The function

n "
L. E A \‘ ot dog (B)

k~q a

(2)

is called a characteristic function corresponding to Eq. (1). We note that for

anv

Mied)  L(her (3
When L(') - 0, Eq. (l), according to equality (3), has a solution .(z) = u‘z,
where - is anyv number. Hence it follows that Egq. (1) is solved by any function

having continuous derivatives of up to and including n order on (al,bl). In this
case Eq. (1) reduces essentially to an identity, and therefore this case is not
interesting.

Let us examine the case when the function L(') has no zeros at all,
Then, since L(*) is an exponential function, L(*) = Aowz, where A and v are
constants, A 7 0. Since, as is evident from representation (2), the function L(%)
behaves on the real axis as O(f-[n). the number Vv is purely imaginary., Further-
more, it is also evident from representation (2) that

L@ <O e ™ Lm0 (LM <Oy e " R Imag

on the imaginary axis for large |» . Therefore, the number v belongs to the

segme nt :a.bd. According to equality (3) we have

-11-



M (e*?) = Aevier, (4)
We set Ml(;) = A.(z + Y). On the basis of (4) we conclude that M(exz) = Ml(ekz)
for any %\. Hence it follows that for any functions +(z) having continuous
derivatives of up to n order on (al’bl)’ the following relation is valid:
M) = My () = Ap(z + 7).
Consequently, in this case Eq. (1) has only the trivial solution s(z) = 0.
Now let the function L(\) have a finite number of zeros kl,\z,...,»s

whose multiplicities are equal respectively to m m . We have

Lo e oM
L) =PMe™, PO =AQ—M)™ ... (h—A) ", TEla,b].

N
It is obvious that N =m +...+ m_ < n. Let P() =3 awA'. We set
v=0
N
Aﬁ(w)::za aﬂw“wz4.7y As in the preceding case, it can be seen that the
v=0

equality M(.) = Ml(') for the functions ,(z) being considered. The solution of
Eq. (1) reduces to the solution of the equation MI(J) = 0. The general solution

of the latter has the form

P = 3 Py,

v=1
where P/(z) is an arbitrary polynomial of degree less than m, -
These cases are not of great interest., Let us now go on to the case

when L(*) ¥ 0 and L(*) has infinitely many zeros. Let } . be various

.1,\2.---,ﬂk,-.

zercos of the function L(~») and let My sMysene,M ..., FESP., be their multipli-
cities.
We associate with the solution .(z) of Eq.(l) the series
Ay
Y@~ 3 Py@e™, (s
AV
where
=1 W {p, 2, )
Py (s) e = — g L2 8 e gy,
Y L (n) "

2
CV

-12-



Here C 1s a circle with cepter at the point > , within which there are no zeros
v .

of the function L(u.) that are different from * and
v

b 13 5
ot 2 = 3 { LT (ola+ t—memdn | dorf®) 2600 ~a b0

)
- )
k-0 o

It is obvious that PJ(z) is a polynomial of degree less than m . According to
e

lemma 5 the polynomial P (z) does not depend on the paramecter .

We note that for a function .(z) of the form

N
V@) - 3 Puz)e,

vt (6)
where Pv(z) is an arbitrary polvnomial of degree less than m , series (5) coin-
v

cides with the finite sum (6) by virtue of lemma 7. This circumstance explains

why series (5) is chosen as the series corresponding to the solution of Eq.(1).

Let 5 be some zero of the function L(.) (¢ for a certain v),

Along with Eq.(l) let us consider the equation

n h

ALy = E S\p""’(z -+ 'é)dak (&) = 0, 7)

k oa
whose characteristic function
[ﬂu L (W)
g

-
o7

is defined in lemma 1. If & = s the term Pj(z)e Y of serics (5) corresponding
to this zero - will be denoted by P(z)e;z.
Theorem 1. Let . (z) be a solution of Eg.(l). Then the funciion
f(a) y(a-—=P)e (8)

is the solution of Eg.(7). Moreover, there holds the equality

y(u.u.ib::ﬁ(u.u.ﬁ (
Lo Tw »

where the function «(.,x.f) was introduced in lemma 4 and is constructed by means

of the function L(.) in the same way as the function J(.,x.I) is constructed by

means of L(.).



In order to prove the theorem, we note first that by lemma 7

Ao a®) g, —- P(2) B2
zm.cg CoPetdi=9@r 9@ =P@e,

where C is a circle with center at the point o, within which there are no other

zeros of the function L(u) except the point B. On this basis, since f = ; - :

.y

we have

1t com a.f) 1 © (.1, $) 1 w{p, o, Q)
S D gy = (229 purg —-S——_—— bz dy = 0,
Zm'CS L(n) " 2ni§_ L(n) eran anc L(p) e o

Hence we conclude that the point 8 is, for the entire function w(.,a,f), a zero
of multiplicity equal at least to m, where m is the multiplicity of the zero

« = p of the function L(u). By virtue of lemma 4 there holds the relation

n

[
e, o f)=@—herag o N+ 3 § ¥ @+ dand)

h-o
a€(a,—a, by —0b). (10)
If here we set 4 =g, we get
n b
a4+ 8 doe(E) =0, a€la,—a, b—0b)
k;‘& ) do (&) (@, L —b) (1D

Consequently, the function f(z) actually satisfies Eq.(7). On the basis of (1)
the equality (10) takes the form

Mo a,f) - m—ps e om, a f)
from which follows relation (9). The theorem is proved.

Theorem 2. 1If the function u(z) satisfies Eq.(7), then it also satisfies

Eq.(1).

Proof. We make use of lemma 4, according to which

-— n b ~
Mo e, P = E—Heom a3 (¥ @+ D)

he=o g
a€lay—a, by—b).
8y the condition of the theorem the second term on the right-hand side of this

equality equals zero; therefore, oo, 9) w2 V)
L{n) L

-14-



and

o(p,a,P) 2z ’ «’;{u.a.\p) nz
—_—"dp -\ L
S L (p) # § Lo e dp, (12)

where T is any closed contour on which L{u) # O. According to lemma 5, since the

function y(z) satisfies Eq.(7), the right-hand side of relation (12) does not depend
on 2. Consequently, the left-hand side of this relation also does not depend on 2.

Then, by lemma 6 the function y(z) satisfies Eq.(l), which is what had to be proved.

The function w(.,a,.), constructed by means of the function L{u), will

be denoted by i (w,x,.). In the new notation the function Tu,a, ) is igGsd, )

The left side of the equation

n

b
3 v (e + Bdoe @) = 0,

kR=n a

for which the characteristic function is
"Ll
L= 3 A" { e dou (@),
a

will be denoted by ML(.) = ML[;(Z)].

In the proof of theorem 1 it was shown that the point ¢ for the function
4(1,71,f) is a zero of multiplicity not less than m. From relation (9) we conclude
that this point is a zero of the functionvz(g,a,f), whose multiplicity is not
less than m - 1. Let m > 1. We set

Lin) Ly (1) -
LW=—-—"s =22, Lw=L
: W—pr p—p @=L
according to lemma 4

e My, (p, , f) =(p— B) ey, (u, a, f) + /”L. [f(a)]. ag (al —a, bl - b)'

Setting here 4, = -, we find that MLz[f(a)] = 0 and

o Beacf)y o (na, )
Ly (p) Ly ()

-15-



The point 3 for LLz(ﬁ,a,f) will be a zero whose multiplicity is not less than
m -2, Ifm -2, the indicated process can be continued. As a result, we reach
the conclusion that the function f(z) = ,(z) - P(z)epz satisfies the equation

MLk(f) = 0 and that the following relation is valid:

wp(neafy o (k2 f) L
- D Le(p)y = =B
L{w Ly () x () sl 0k m. 1)

We note that on the basis of relation (13) the series f&)a—}S'Pva)eM‘

corresponds to the function f£(z) as the solution of the equation MLk(f) = 0; this
series differs from series (5) only in that the term P(z)epz, corresponding in
series (5) to the zero 3 of the function L(u), is absent in it.

The above reasoning has made it possible to go from an equation with
a characteristic function L(u) to an equation with a characteristic function
Lk( Y. IfY (v #p) is a zero (of multiplicity p) of the function Lk(“)’ it is

possible to go over in a similar way from an equation with a characteristic

function Lk(u) to an equation with a characteristic function

Ly (W)
(w—7y

v 0g<p,

To sum up, we can formulate the following theorem.

Theorem 3. Let .(z) be the solution of Eq.(l) to wh -h the series (5)

corresponds. Then the function

F@)=v(2)— 3 Py(d) e

V=]
is the solution of the equation
MglF() =0, zeé(a,—a, by—0b) (14)
with the characteristic function
K@) = Lw —, o< <my, ..., 0<n<m; (15)
(B—2)" o (p—A)
and
mL(u..a.F) 0 g (W, a, F)
= , a€(a,—a, by —0).
L(w) Kw €@, 10 (16)

-16-



By successive aprplication of theorem 2 it is possible to conclude that
if F(z) is a solution of .. (14), then F(z) will also be a solution of the ori-
ginal equation (1).

We note that by virtue of lemma (1) the function K(.) has the form

n

b
K =3 w(entda @),

k=0 a

where 0;(§) are functions of bounded variation on the segment [a,b;, and the

numher n is here the same as in formula (l). In conformity with this,

>

M

Mn (F) -

F (@ By dok )
a (17

k.

n

Let us assume that the function F(z) has continuous derivatives of up to and
including n order on the interval (al’bl) = [a,b]. The class of such functions

will be denoted by Cn(al,b ).

1

Let us find a simpler representation for the operator (17).

n

For large 'A} the function L(.) varies on the real axis as O(E. ).
In representation (15) we choose s and nl,...,nS under the condition:
n,+ ... +n =n+ 2, Then the function K(.) will vary on the real axis as

1 s

O(’d‘-z). On the imaginarv axis, for large fu( we have

(K <O (e ™1 Imp>0
T [<<o(u™e® 0 Imp <o,

Let the segment [a,b, contain the origin so that Im a 0 Im b, Let

v(t) be a function that is Borel-associated with the function K(.). We have
o

Y (1) = S K () et dp,

n

(18)

y 1
K = z—m;ST(l)l’“'d{. (19)
¢

where C is a closed contour encompassing all the singularities of the function

v(t). 1If in integral (18) we choose the positive real semi-axis as the path of

-17-



integration, then, taking into account the above-mentioned behavior of K(.) on
this semi-axis we find that the function Y (t) is regular in the half-plane

Re(t) - 0 and is continuous in the closed half-plane Re (t) - 0. Analogously,

we see that Y(t) is regular in the half-plane Re (t) -~ 0 and is continuous in

the closed half-plane Re (t) ~ 0. If as the path of integration in integral (18)
we first choose the upper part of the imaginary axis, and then the lower part,

we find that the function Y (t) is regular in the half-plane Im (t) > ibi and

Im () -{ai and is continuous in the closed half-planes. Keeping this in

mind, from (19) we get .

K = (o@esd,
i (20)

|-

where . (2) = LY(?+0) - Y(3 - 0)], and V(£ + 0) is the limit of the

o

~1i
function » (t) as the point t tends to the right to the point 7 of the segment

.a,b,, and ~ (¥ - 0) is the limit of the function Y (t) as the point t tends to the

left to the point *. The function () is continuous on the segment {a,b] and
equals zero on the imaginary axis outside this segment. We note that the function
() is not everywhere equal to zero on [a,b],because if it were, the function K(u),

and consequently also the function L(.), would be identically equal to zero, which

contradicts our condition. We set
b

AR N OROFEDE F@)ec @, b
The equality A(F) = MK(F) is fulfilled for the function F(z) = e"z with arbitrary

Hence it follows that the latter equality also holds for arbitrary functions

F(z) from the class Cn(al,bl). Thus,

b

Me(F)=\ @) F(z+8)ds  F(2)6C (ay, by). 1)

This makes it possible to formulate the following theorem on the basis of theorem 3.

Theorem 4. Let .(z) be the solution of Eq.(l) to which series (5) corres-

~-18-



ponds. Then the function

F) 9@)—= 3 Pezyets,

where s is chosen such that t..e condition m1 + ...+ ms *n+ 2 is fulfilled,

satisfies Eq.(21). Converselv, if the function F(z) & Cn(al,bl) satisfies Eq.f21),

it also satisfies Eq.(l).

Theorem 4 permits reduction of the question as to the solution of Eq.(l)
to the question of the solution of the simpler equation (21).

Eq.(21) was studied in detail in [1]. Let us give some of the results
from this paper. Let [32‘b2; ~ [a,b, be the least segment outside which the
function (%) in representation (21) equals zero. Without loss of generality of

the reasoning, it can be assumed that it is symmetrical relative to the origin, seo

. . 5
that a, = -qi, b2 = qi, q - 0. 1If we set o) = S o (&) dt, then Eq.(21) can

2 S
be represented in the form

qi

M (F)=- § Flz+8)do) =0, 217)

—of

and the characteristic function (20) in the form

Kp) = g et do (2).

—ai

The function K(.) has the {ollowing properties:

1) for almost all - ¢ [0,27] there exists

lim
r =00

In | K (re’® .
mlXee ] —gisingl: (22)

2) there exists a sequence of numbers °k >0 (ck t =) and a number
p > 0 such that
In[K(re' )| > @lsing|—e)r, ppe—p<r<pe+p ESN(e), 23
where ¢ ~» 0 is any number.

Let B > 0 be a sufficiently small number such that on the rays

-19-



aryg _= + 9 and arg . = -(% + ») relation (22) is fulfilled. We assume that the

tof

function F(z) is coatinuous on the interval (al,bl),: [-qi,qi] and satisfies

Eq.(21) for z - (a} + qi, b1 - qi). Let -, (v = 1,2,...) be various zeros of the

function K(.). The series
F()~¥Q. (2)e™?

P )

™ (24)
where

(O e N N F
RPN ST
2 K

v

corresponds to the function F(z). Here C, is a circle with center at the point
- within which there are no zeros of the function K(.) that are different from

W , and the function LK(Q,J,F) is determined by the formula

0 %
. L p—an : - I 1
ox (p, 2, F)--¢ l_ii[§FY1 ,§L n)dﬂdano(&. (25)

I1f F(z) < Cn(al,bl), the function (25) coincides with the previously introduced
function LK(J,J,F). This follows from the fact that, as is easy to verify, these
functions are equal for functions of the form F(z) = e*? with any *. Let A and

4 be fixed positive numbers. By Dl we denote a rectangle -A < x < 0, Im a +

+ i< y< Imb, -3,

§ Ty 7 Imb, - %, and by D, a rectangle 0 < x < A, Im a 1

1 1

We subject the previously introduced number 2 to the condition: sin p < ﬁé%illﬁ .

We let S° denote the region lying to the left of the contour Ib formed by the

rays arg « = % (% + B), and S’ the remaining region of the plane. It is shown

in _1, that there exist limits

F (zn-= ’!im > Q@)™ zeD,,

~00

2
Ity | <ep HyES’ (-6)

F@=lm 5 Q@ zeD, @n
™ HyES”

the coanvergence within these regions being uniform, It is proved that uniformly

-20-



for all y (Im a, + v Im bl - %)

lim (Fyi) - F, (:‘)l Fup(z- x iy, 7 —y - iy).

-0 (28)
This relation can be considered as the method of Abel for the summation

of the generally diverging series (24). Let the function F(z) have a continuous

derivative F (z) on (al,bl\. Let us verify that a serics whose terms are deri-

vatives of the terms of series (24) corresponds to the function F'(z). By virtue

of (25) we have
of 3

Wh(yy @, [ - S [SF'(a + g~ n)el‘"dq}do(a),
—qf v 0
Since
F 3
SF’(a-f~E,—n)6""d1|:—F(a)e=u+F(a+ E)-‘—pSF(a+§_n)cundn_

0

we find that
{ [V Fa+i—mendn]do@ = — FK @+
—qi 0

o { 13 -
+ \ Fla- E)dU(E)THQS [SF(a+§-—n)ewnJ'do<§).

fy
—yi —qf 1]

The middle term on the right side of this equality equals zero. Therefore,

o meu,a, Fr g (pya, F)
1 \ Ok ) gy o A f Howlb 2 D gy
2.‘lic K ) 258 . K (n)

v v

1 R W (1w a, F)

d nz
we gy = -
Ko ers dp i [Qv(2)e™),

dz -2
Cy

which had to be proved. Hence it follows that relations of the form (26),(27) and
(28) will also be valid for the derivative F’ (z). Taking this and thecrem 4 into
account, we formulate the following theorem.

Theorem 5. Let the function .(z) from the class Cn(al,bl) satisfy Eq.(l)

- b) and let series (3) correspond to the function ,(z). Then,

for z ¢ (a1 - a, b1
¥ (i) = lim (™ (2) + ¥ @) iy€(a, by) m=0,1, ..., n), (29)

=21~



where
W@ =lim 3P @EI™, W@ =lim S Py [
A-s00 k-s00
{Ay i <eg VAt <og
AvES’ €87

(29) the convergence is uniform

and z = x + iy, z = -x + iy, x » 0. 1In relation

for iv - _1,7] (al’bl)'

As corollaries of theorem 5 we note the following propositions:

1) if .(z) = 0 on the segment _a,b], thean ,(z) = 0 everywhere on (al,bl);
2) the solution .(z) in any segment {2,537 = (al’bl) can be approximated

as well as desired by means of linear finite combinations of functions from the

system

s
2 et s=0,1, ..., my—1, v=1,2, vk
to be more precise, for any £ > 0 there is found an aggregate
N m—t
P(2)= Z E av'szse"vl.
V] =0

satisfving the condition

V™) — P () <en zéfa, B (m=0,1, ..., n).

In _1, the following formula was established for the solution (24) of

Ba-(2D): F— 3 Qe =
I3y 1 <p
1 £ erg s ]
= b (e [(TCF € = ey | da )
2“‘}u$=, —— {SLS ] a(&)} b

where s is any number for which there exists a bounded piecewise continuous deri-

vative F(s)(z). Hence

Fim (2)— 2 Qv (2) e“vlj(m) =
Inyi<e
sl re-reansfus

(30)
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l.Let the condition

K> A% g o argp, (31)
be fulfilled on a certain svstem of circles fui =0y (.k * ). Under this
condition, as shown in 1., for z from the segment [,z . (al + qi, bI - qi)
and !q! = :k there holds the estimate

e S = e an e, kv,
o
where ¢ - 0 is any number. Because of this fact, we {ind according to relations

(30) and (31)

m 2. .
‘F‘ o— 3 Qe L, z6[x, 3]
n o een pk—m—n~l 4
(32)

We note that the function K(.) has the form (15), where the numbers nl,...,ng
can be chosen such that ny + ...+ n_ =n + 2. Condition (31) will be fulfillea
for p=n-r + 2 if

L] ”“lircnlwmﬂlllll' 0 =argp, “l{ - Pk, P} o, (33)

Taking inequality (32) into account and considering theorem 4, we get the
following statement.

Theorem 6. Let the function .(z) have no fewer than s (s - n) deriva-

tives on the interval (al’bl); in this case, if s ~ n, then s - 1 first derivatives

(s)

are continuous, and the derivative (z) is bounded piecewise-continuous. Let

- b) and let series (5) correspond

.(z) satisfvy Eq.(1) in the interval (al - a, b

LU RD 4 ————— 1

to the function .(z). If condition (33) is fulfilled, then

m) . . .
\p""’(z) — le, - [Py (:)(‘"“Il‘ 2 ;F‘—:"—’": . 2C [, Bl C (ay-+-qi, hy—qi).
N ]

In conclusion let us give one more theorem, which was established in [ 1.

for the solutions of Eq.(21); by virtue of theorem 4, it will also be valid for

the solutions of Eq.(1).



Theorem 7. Let the function .(z) satisfy Eq.(l) on the whole axis

and let series (5) correspond to the function (z). If the function .(z) is

regular on the segment {a,b), then a certain subsequence of partial sums of series (5)

N oP@e™ (k-1,2, ...

1Ay L tog

converges uniformly within a certain strip

— o < <R < <o, 10 <O ay, (34)

moreover, it converges to the function .(z); ¢onsequently, the function c(2) is

analvtic in the strip (34).

Moscow Received
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